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1. Learning Outcomes:
After studying this chapter, you should be able to
> identify the initial value problem for the first order ordinary
differential equations;
> obtain the solution or the initial value problems by using Euler's
method;
> obtain the solution of IVPs using Runge-Kutta methods of second
and fourth order;
> extrapolate the approximate value of the solutions obtained by the

Runge-Kutta methods of second and fourth order;
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2. Introduction:

Solving differential equations, both ordinary and partial, is one of the
most useful and important application of numerical analysis. There are
mainly two common problems we face in finding the numerical solution of
a differential equation. The first one is: When one finds a numerical
solution is sufficiently close to the exact solution? The second problem is
the instability of numerical solution. The actual solution to the problem of
interest is stable, but the errors incurred in the numerical solution are
magnified in such a way that the numerical solution is obviously
incompatible with the actual solution. A numerical method that gives
accurate results and is stable with the least amount of computation time
often requires that it be started with a somewhat less accurate method
and then continued with a more accurate technique. There are many
starting techniques and methods that are used to continue a solution. In
this chapter we shall introduce two such methods namely, Euler's method
and Runge-Kutta Method of second order and fourth order to obtain
numerical solution of ordinary differential equations (ODEs). Initially we
shall focus on solving the first order equations, since, every nth-order
equation is equivalent to a system of n first-order equations. To begin
with, we shall recall few basic concepts from the theory of differential

equations which we shall be referring quite often.

3. Basic Concepts:

In this section, we shall start with few definitions from differential
equations and define some concepts which are involved in the numerical
solution of differential equations.

Definition: An equation relating an unknown function (dependent
variables) to its various derivatives with respect to known functions
(independent variables) is called a differential equation, thus

2
?sz +2x f=¢” @
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Su o _

W—F 8y2 - (2)

are examples of differential equations.

Value Additions:

Differential equations involving derivatives w.r.t. a single independent
variable are called ordinary differential equations (ODEs) whereas, A
partial differential equations (PDEs) contains partial derivatives w.r.t.
more than one independent variable. Egn. (1) is an ODE, while Egn. (2)
is a PDE.

Definition: The order of a differential equation is the order of the
highest derivative occurring in the equation and its degree is the highest
exponent of the highest order derivative after the equation has been
rationalised. The order and degree of the equation

((;%T+2x3%—sinu:eX (3)
is 3 and 4 respectively.
The general solution of an nth order linear equation is a family of
solutions containing n arbitrary constants. In order to determine these
arbitrary constants, n conditions are required. If these conditions are
given at one point, then these conditions are known as initial conditions
and the differential equation together with the initial conditions is called
an initial value problem (IVP).
If the n conditions are prescribed at more than one point then these
conditions are known as boundary conditions. The differential equation
together with the boundary condition is known as a boundary value
problem (BVP).
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We will need to study numerical methods for the solution of the first order
IVP

y'=f(y.t), y(t)=Y, ~(4)
Starting with the initial values, the solution are hence constructed step by
step through a series of equal intervals in the independent variables so
that as soon as the solution has been carried to x = x;; the next step will
be to evaluate the change in the solution through the interval Ax = h of x;

to Xi + 1.
Let us take the interval [to!b] over which the solution of the IVP (4) is

required. Sub-dividing the interval [to,b] into n sub-intervals using a step

size

h:{t“ m },Wheretn =b
n

We can then writet, =t,+kh, k=0,1,..... n. A numerical method for the

solution of the IVP (4), will produce approximate valuesY«, at the grid
pointst.

Let us now discuss how to construct numerical methods and related basic
concepts with reference to a simple ODE

%d Y, Y(to)=Yo,t €[a,b] ®)

Let us define the grid point by

t =t,+kh, k=01, ..., n, where t,=aandt,+nh=b
Separating the variables and integrating, we find that the exact solution
of Eqn. (5) is

y(t)=y(t )™ (6)
To get a relationship that connects two successive solution values, we put
t=t, and t=t ,in Eqn. (6). Thus we get,

n+1
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y(t,)=y(t)e "™
and

y(tml): y(to)eﬂ(tn+rt0)
Dividing, we get,

y (tn+1) _ gt _ e/l(tmrtn )

y(t,) e™

Hence we have,
Y(ta)=€"y(t,) (7)

Eqn. (7) gives the required relation between y(t,)and y(t,.,).

Puttingn=20,1,2,..... we can find y(t),y(t,),y(t).... from the given

value Y(t).

We can get a numerical method by approximating e*" in Eqn. (7). We

may use the following polynomial approximations.

e" =1+ 2h+o(|2hf’) ®)
2 182

e =14+ 1h+ 2 h +o(|ﬂh|3) (9)
2 162 3 Rh3

e 14 Ah++ 2 h 2 h +0(|/1h|4) (10)

and so on.

Now retain (p+l) terms in the expansion of e*" and denote the

approximation e*" byE(4h). The numerical method for obtaining the

approximate valuest,, of ¥(t,) can then be written as
You=E(2h)Y,,n=0,1,2,3,...... (11)

4. Euler’s Method:

Let us consider the first-order equation which can put in the form
y="f(y.t) 12)

. d .
where Y=d—>t,- If ¥i and Y at & are known, then Eq. (12) can be used to

give Yiu and Yia at b,
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Euler’'s method results from approximating the derivative

ay_ lim Ay 3)
dt at—0 At
By the difference equation
Ay =y At 14)
Or, in the difference notation
Yia=hy; 15)
where h=At=t,—t, is the step size.
Example 1: Use Euler’s method to Solve the IVP

%:1-2 yt, y(0.2)=0.1948. Find y (0.2) with h=0.2 .

Solutions: In Euler’'s method we must have the first derivative at each
point; it is given by ¥=1:2Y{%
The solution is approximated at each point by

y|+l y|+ hy| yi+h(1_2yiti)
y(0.4)=0.1948 + (0.2) (1 - 2x 0.2 X 0.1948)
= 0.379216.

Example 2: Solve the IVP y'=t +vy,y(0)=1 by Euler's method using
h=0.1. Find the exact error, if the exact value is y(1)=23.436564.

Solution: Euler's method is given by y.,=y,+ hy,

For our problem, we have vy, =y, + h(t,+y;)=(1+h)y, +ht,

Starting the iteration withh=0.1, y(0)=1, we get,

=1+ 0.1)><1+(0.1) (O) =11

.=(L1)
= (L
()
s=(11)

Yo :(1.1)(1.72102)+(O.1)(O.5):1.943122,
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. =(1.1)(1.943122 ) +(0.1)(0.6)= 2.197434,

(
s =(1.1)(2.197434)+(0.1)(0.7)= 2.487178,
» =(1.1)(2.487178) +(0.1)(0.8)= 2.815895

Yio =(1.1)(2.815895)+(0.1)(O.9): 3.187485=y(1)
actual error = y(1)-y,, =3.436564 —3.187485 = 0.2491.

Example 3: Solve the IVP 3%+5y2=sint,y(o.3)=5 by Euler's method using

h=0.3. Find the value of ¥(0.9).

Solution: First rewrite the differential equation in the proper form.

((jj)t/ f(yt)= 1(slnt 5y*),y(0.3)=5

Euler’'s method is given by y,, =y, +h f(y,.t)
where
h=0.3, fori=0,t,=0.3,y, =5,
Y,=Y,+h f (yo,to):5+0.3><%(sin(0.3)—5(5)2):—7.4704
Y: is the approximate value of y at
t=t,=t,+h=0.3+0.3=0.6, fori=1,t, =0.6, y, =— 7.4704,

y,=y,+h f (yl,tl):—7.4704+0.3x%(sin(0.6)—5(—7.4704)2):—35.318

Y> is the approximate value of y at
t=t,=t,+h=0.6+0.3=0.9,
y,=y(0.9) =-35.318

Example 4: Solve the IVP jy 4t,y(0) =1 by Euler's method using h=05.

y
Find the value of Y(1)-
Solution: First rewrite the differential equation in the proper form.

dy
=f(y,t)=—,y(0)=1

i % )= y Ly

Euler’s method is given by y,,,=y,+h f(y.t)

where
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h=0.5, fori=0,t,=0,y,=1,

4x0 0

Yi=Yo+h f(¥.ty)=1+0.5x

Y: is the approximate value of y at

t=t =t;+h=0+0.5=0.5, fori=11t,=0.5y, =1,

4x0.5 5

Y=Y, +h f(y,t)=1+0.5x

Y> is the approximate value of y at
t=t,=t,+h=0.5+0.5=1,
yzzy(l) =2

Value Addition:

Euler’'s method is simpler to use since we do not have to compute higher
derivatives at each point. It could also be used to solve higher order

equations.

5. Runge-Kutta Methods:

In order to produce accurate results using Taylor’s method, derivatives of
higher order must be evaluated. This may be difficult, or the higher-order
derivatives may be inaccurate. Methods that require only the first-order
derivative and give results with the same order of truncation error as
Taylor's method maintain the higher-order derivatives are called the

Runge-Kutta method. Estimates of the derivative must be made at points
within each intervalti=U=t.,, The prescribed first-order equation is used to

provide the derivative at the interior points. The Runge-Kutta method of
second-order will be developed and the Runge-Kutta method of fourth-

order will simply be presented with no development.

Value Addition:

Since Euler's method is of first, it requires h to be very small to attain the

desired accuracy. Hence, very often, the number of steps to be carried
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out becomes very large. In such cases, we need higher order methods
like Runge-Kutta to obtain the required accuracy in a limited number of

steps.

5.1. Runge-Kutta Method of second order

Let us consider the first-order equationY=Ff(¥.t). All Runge-Kutta

methods utilize the approximation
yi+1:h¢|' (16)
where ¢ is an approximation to the slope in the interval t=t<t,,

Certainly, if we used # =", the approximation for Yi. would be too large
for the curve in Figure 1; and, if we used 4= f...the approximation would
be too small. Hence, the correct ¢ needed to give the exact Y. lies in the

interval f,<¢<f

i+1"

Slope =f;

/ Slope = fi +1

v

ti h t41 %=F (%)

Figure 1. Curve showing approxit Yiionsto Y+ ;ing slopes fiand fi:
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The trick is to find a technique that will give a good approximation to the

correct slopeé. Let us assume that

¢ =ag +bn, 17)
where & =1 (y,.t;) (18)
Ui:f(yi"‘qhé:i’ti"'ph) (19)

The quantities a, b, p, and q are constant to be established later.

A good approximation for 7 is found by expanding in a Taylor series,

neglecting higher-order terms:

m=1 () + 200 4) St At o)

_ a a 2
_fi+thiay(yi,ti)+phat(yi,ti)At+o(h) (20)

Where we have used Ay=qghf. and At=ph, as required by eqn. (19). Egn.

(16) then becomes, using &=

Yia=Y,+thd =Yy, +h(a‘§i +b77i)

=y,+h(af +b fi)+h{bq fi%(yi,ti)+b p fi%(yi,ti)}o(hs), (21

where we have substituted for & and 7 from egn. (18) and (20),

respectively. Expand Vi in Taylor series with second order, so that

2

. =V.+hy +—V.
y|+1 y| y| 2 yl
2

:yi+hf(yi,ti)+h?f(yi,ti) (22)

Now, using the chain rule,

ot

oy ot ot ot

of
+E (23)

2|2

a
oy

Thus, we have
Institute of Lifelong Learning, University of Delhi Pg. 11
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h?| . of of
Yia=Yithf (yi’ti)+?|:fi a(yi’ti)—’_ E(yi’ti):| (24)

Comparing this with egn. (21), we find that (equating terms in like

powers of h)
a+b=1, bqg="1, bp=11 (25)

These three equations contain four unknowns; hence one of them is

arbitrary. It is compulsory to choose b = Y2 or b = 1. For b = 2, we have
a="%,q=1andp = 1. Then our approximation for Yiu: from eqn. (21)

becomes

Yia=Yi +h(a‘§i +b77i)
h
:yi+5[f(yi,ti)+f(yi+hfi,ti+h)] (26)

Forb =1, we havea =0, g = Y2, and p = V2, these results
h h
Yia=Yithp=y,+hf yi+5 fi’ti+z (27)

Knowing Yi,t and Yi=f, we can now calculate Y1 with the same accuracy

obtained using Taylor’s method that required us to know ¥;.

Value Addition:

The different R-K methods are of second order are given by

(1) Optimal R-K method:

Yiir=VYi +%[§| +37, ] (28)

where
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(2) Improved tangent method:

Yiia =Y+, (29)
where
é:izh f (yi'ti)
5 h]
=hf|ly+= t+—
77| (yl 2 1 2

This method is also known as modified Euler's method.
(3) Heun's method:
1
Yiia=Yi +E(§i +77i) (30)
where

é:i:h f (yi’ti)
ni=hf (Yi +& o4 "'h)

This method is also known as the Euler-Cauchy method.

Example 5: Solve the IVP y'=1+y?,y(0)=0 and find y(0.4) with h=0.2 using

the following R-K methods of second order

a) Optimal R-K method
b) Improved tangent method

c) Heun's method

Compare the results with the exact solution Y(t)=Ent and find the errors.

Solutions: a) Optimal Runge-Kutta, method:

&=h (Yo ty)=h(1+y,")=0.2(1+0)=0.2

2 2h 25 Y 2x0.2'Y
nozhf(yo+% ,t0+?J:h{l+(yo+%] }:0.2{1+(0+ 3 ) }

=0.2035556

Thus,

Institute of Lifelong Learning, University of Delhi
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y,=y(0.2)=y, +%[§0 +37, ]:0+%[ 0.2+3x0.2035556 |=0.2026667

Tocalculate y,, weneed,
&=hf(y,t)=h(1+y,’)=0.2[1+(0.2026667)" |=0.2082148

=h f (yl 2a t +23hj

o]

2
=O.2{1+(0.2026667+M] }

=0.223321245
Thus,
y,=y(0.4)
=Yy, +%[§1 +3n, ]:0.2026667+%[ 0.2082148+3x 0.223321245]
=0.422211334
b) Improved tangent method is

&=t (yyt,)=h(1+y,")=0.2(1+0)=0.2,

770=hf(y0+% ,t0+5hj=h{ (yo+éj } 02{1+£0+%) } 0.202

Y, =y(0.2) =y, +17,=0+0.202=0.202
&=hf(y,t)=h(1+y,")=0.2[1+(0.202)* |=0.2081608,

2
th(yﬁ%,tﬁg}h{ (yﬁi” o.{u(o.zomwn

=0.21873704
Y, =Yy(0.4) =y, +7,=0.202+0.21873704 =0.42073704

c) Heun's method :
&=hf(yoty)=h(1+y,")=0.2(1+0)=0.2
o= T (Yo+&, ,tO+h)=h[1+(y0+§0)ZJ=0.2[1+(0+O.2)2}=0.208

y,=y(0.2) =y, +%(§0 +770):O+%(0.2+0.208):0.204

Institute of Lifelong Learning, University of Delhi
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&=hT(y,,t)=h(1+y’)=0.2[1+(0.204)" |-0.2083232

M=t (v, +& t+h)=h[1+(y, +&)" [=0.2[ 1+(0.204+0.2083232)’ |
~0.2340020843

y,=y(04) = yl+%(§1+771)=O.204+%(0.2083232+ 0.2340020843)
~0.4251626422

Now the exact solution is y(t) = tan t
Exact y(0.4) = 0.422793219

Error in Optimal R-K method = 0532<10°
Error in Improved tangent method= 026107

Error in Heun's method = Q236 <107
Example 6: Solve the IVP y'=t’+y* y(0)=1 and find y(0.2) withh=0.

using the following R-K methods of second order

a) Optimal R-K method
b) Improved tangent method

c) Heun's method

Solution: a) Optimal Runge-Kutta, method:

hf(Yoty)=h(t,>+y,°)=0.1(0+1)=0.1

i B2 ]

2
=o.1[(0+ 2><30.1j +(1+ 2X30'1j }: 0.11422222

Thus,

y,=y(0.1)=y [§0+3770] 1+£ll[0.1+3><0.11422222]:1.11066667

Tocalculatey,, we need,

&=hf(y,t)=h(t?+y,’)=0.1] (0.1)* +(1.11066667)" |=0.12435805
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_ 26 20 2h 24
Ul—hf()’ﬁs t+3j h{(tﬁsj (y1+3j}

2 2
=0.1H0.1+ 2><30.1) +(1.11066667+ 2X0'123435805j }: 0.1452392

Thus,

y,=y(0.2)=y. [§1+3771] 1.11066667+%[0.12435805+3x0.1452392]

=1.25068558

b) Improved tangent method is

&=hTf(ypt,)=h(t,> +y,")=0.1(1+0)=0.1,

R RO
-o1 oo 1.1 | oz

=y(0.1) =y, +7,=1+0.1105=1.1105
&=hf(y,t,)=h(t’+y)=0.1]0.01+(1.1105)* |=0.12432,

_ ERLL N IO Y V-
m_hf(yl+2 ,t1+2j h{( +2) +(yl+2):l
:O.l{ (O 1+%j (1.1105+ 0'1;432J :I:O.13976

=y(0.2) =y, +73=1.1105+0.13976=1.25026

c) Heun's method :
&=hf(yot)=h(t,>+y,>)=0.1(0+1)=0.1
Mo=h T (Yo+ &ty +h)=h| (t,+h) +(y, +&)" |=0.1[0.01+1.21]=0122

y,=y(0.1) =y, +%(§0 +770):1+%(O.1+ 0.122)=1.111

&=hf(y,t)=h(t’+ yf):0.1[0.01+(1.111)1:0.1244321

f(y,+& ,tl+h):h[(tl+h)2 +(yl+§1)2}
—0.1[0.04+1.52629247]=0.15662925

Institute of Lifelong Learning, University of Delhi
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¥,=y(0.2)= yl+%(§l+771)=1.111+%(0.1244321+ 0.15662925)=1.25153068

Example 7: Solve the IVP y'=-ty?,y(2)=1 and find y(2.2) with h=0.1 using

the following R-K methods of second order

a) Optimal R-K method
b) Improved tangent method
c) Heun's method

Solutions: a) Optimal Runge-Kutta, method:

&=hf(ypt)=h(-t, yoz):o.l(—z): 0.2

O e AR

-
=o.1{ (z 0—32)[ —ZXO'ZJ ——0.15522963

3

Thus, y, =y(2.1)=y, +:11 [&+37, ]:1+:11[ ~0.2—3x0.15522963 |=0.83357778

Tocalculate y,, weneed,
&=hf(y,t)=h(-t,y,)=0.1] —2.1(0.83357778)" |=—0.1459189

NI

2
:0.1{ (2 1+O—32j(0.83357778 2X0'1359189j }:—0.11746269

1
Thus, y, :y(2'2)2y1+2[§1 +3r |

:0.83357778+:11[ —0.1459189—3x0.11746269 |=0.70900104

b) Improved tangent method is

&=t (yoty)=h(-t, ¥,*)=0.1(-2)=-0.2,

S B A O]
=0-1[ (2 0_1j(1_£” ~0.16605
2 2

y,=y(2.1) =y, +1,=1-0.16605=0.83395

Institute of Lifelong Learning, University of Delhi Pg. 17
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&=hf(y,t)=h(-t,y,")=0.1[-2.1(0.83395)" |=-0.14604925,

o s

0.14604925j2}

0. 1|: 2. 15 0.83395— =-0.1244866

¥, =Y(2.2)=y, +n,=0.83395-0.1244866 =0.7094634

c) Heun's method :
&= (Yoty)=h(-t,y,')=0.1(2)=-0.2
Mo=h T (Yo+& by +0)=h| ~(t;+h) (¥, + &)’ [0.1 ~22(1-0.2)" |-~ 0.1344
Y=Y (21) = Yo + (& +) =L+ 5 (~0.2-0.1344)-0.8328
&=hf(y.t)=h(-t ylz):O.l[—2.1(0.8328)2J:—O.14564673
f(n+& trh)=h|~(t+h)(y,+&)’ |
=01 -2.22(0.8328-0.14564673)" |~-0.10482388

y,=y(22)=vy, +%(§1 +771)=O.8328+%(—0.14564673—0.10482388)=O.70756469

Example 8: Solve the IVP y'=3t+= ,y(O) 1 and find y(0.2) withh=0.1
using the following R-K methods of second order

a) Optimal R-K method
b) Improved tangent method
c) Heun's method

Solution: a) Optimal Runge-Kutta, method:

&=hf(yot)= h(3t +3;°J 0.1(0+0.5)=0.05

2 2h 2h
oo Bl 2) (3
:O.1{3(O+ 2X30'1j (0 S5+ %ﬂz 0.07166667

Thus,
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y,=Y(0.1)=y, +%[§0 +37, ]zl+%[ 0.05+3x0.07166667 |=1.06625
Tocalculate y,, we need,

E=hf (yl,tl):h(3t1+%):0.1[0.3+0.533125]:0.0833125

rylzhf(yl 24 t+2hj h{3(t1+2—h)+ﬁﬁ+éﬂ
3 3 3 2 3

0.0833125)}

:0.1{0.5+(O.533125+ =0.10608958

Thus,

¥,=y(0.2)=y, +%[r§1 +37, ]:1.06625+%[ 0.0833125+3x0.10608958 |
—1.16664531

b) Improved tangent method is

£=hf (yo,to)=h[3t0 +ﬁ)=o.1(0+o.5)=0.05

w (g g g 155

=y(0.1) =y, +7,=1+0.05=1.05

E=hf (yl,tl):h[3t1 +%j:0.1[0.3+0.525]:0.0825,

m=hf[yl+% ,fﬁ;hj M 2 j @l ilﬂ

0.0825

=0. 1[3><0. 15+(0.525+ ﬂ =0.09956

—y(0.2) =y, +7 =1.05+0.09956=1.14956

c) Heun's method :
&=t (yot)=h(1+y,")=0.2(1+0)=0.2
o =h T (Yo+& t,+h)= [ (Vo+&,) } [1 (0+02)} 0.208

y,=y(0.2)=y (go +17,)=0 (0 2+0.208)=0.204

E=hf(y,t)= h(1+y1 )=0.2 [1+(o 204)" |~0.2083232
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m=hf(y+& 4 +h)=h|1+(y, +&)" |-02[1+(0.204+0.2083232) |
—~0.2340020843

y,=y(04)=y, +%(§1 +771):O.204+%(O.2083232+ 0.2340020843)
=0.4251626422

5.2. Runge-Kutta Method of Fourth order

The Runge-Kutta Method of Fourth order is perhaps the most widely used

method for solving ODEs. One such method results in

h
yi+1:yi+E[§i+(2_\/§)77i+(2+\/§)§i+wi:| (31)
where
é:f(yi’ti)
(5201
h h
¢ =f |:yi+ (§I =7} )_E( =21, )1ti+5} (32)

h
2
W, = f [yi_%(ﬂi_ é/i)+h§i'ti+h:|'

This method is known as Runge-Kutta-GILL method.

Another method with order four Known as Classical Runge-Kutta
method, is widely used method due to its simplicity and moderate order.
We shall also be working out problems mostly by the classical R-K method

unless specified otherwise. This method is given by
h
yi+l:yi+€[‘§i+2ni+2§i+vvi] (33)

where
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§| = f (yi’ti)
h h
n=f yl+E§i,t,+§]
=1 y#%mt#%j (34)

w=f(y;+hg,t+h)
In all methods above no information is needed other than the initial

condition. For example, Y is approximated by usingYo,% ,, and so on.
The quantities are found from the given equation with no differentiation
required. These reasons, combined with the accuracy of Runge-Kutta

methods, make them extremely popular.

Example 9: Use Classical Runge-Kutta method of fourth-order to solve

the IVP y=4-2yt,y(0)=0.2usingh=0.1. Carry out the solution for two time

steps.

Solution: The first derivative is found from ¥=42¥t . To find ¥; we must

know Yo,%,,% and W,. They are

Y,=0.2,
&=f (yo,to):4—2 Yoty =4—2x0.2x0=4,

h h h h
=1t (%"‘Efa ’to+§]:4_2(%+§§o j(to"'aj

=4—2[0.2+0—'1x4 j(o—l )=3.96,
2 2

h h h h
Go="f (y0+5770,t0 +§]=4—2(y0+5770 j(to-i'ij
=4—2[0.2+0—é1><3.96 j(()?l j=3.96,

W, =f (Yo +hdo.to+h)=4-2(y,+h &, )(t,+h)
=4—2(0.2+0.1><3.96 )(O.l)=3.88

Thus,

Institute of Lifelong Learning, University of Delhi Pg. 21



Numerical Solutions of Ordinary Differential Equations

h
ylzyo+€[§o+2770+2§0+wo]

=0. 2+%1(3 96+7.92+7.92+3.88)=0.595

For next iteration, we start fromY:, and calculate the values ofé&, ", ¢ and

W, They are

&=f(ypt)=4-2y,t,=4-2x0.595x0.1=3.88,

m="f ()ﬁ"‘%gyt{khj:‘l_z(m"'hé (H"‘g}

=4- 2(0595+—x388j(01 — |=3.76,

l= f(yﬁhﬂlvtﬁJ (yﬁ (tﬁgJ

=4- 2(0595+—x376)(0 1+— j 3.77,

w,=f(y,+h{,t+h)=4-2(y,+h{, )(t,+h)
=4-2(0595+0.1x3.77 )(0.1+01)=3.61
Thus,

h
Y2=y1+_[§1+2771+2§1+wl]

=0. 595+%1(3 88+7.52+7.54+3.61)=0.971

Example 10: Use Classical Runge-Kutta method of fourth-order to solve

the IVP y=y+t,y(0)=1usingh=0.1. Carry out the solution for two time steps.

Solution: The first derivative is found from Y =Y,*+4 . To find ¥i we must

know Yo,%,%,% and W,. They are

yo:]-’
E =1 (yo,to):y0+t0=1+0:l,

h h h h 0.1 0.1
n,=f (yO+E§O ,t0+§)=(y0+550)+[t0+5)= (1+7x1j+(7 j=1.1,
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h h h h 0.1 0.1
Go=1 (y0+§n0,to+§j:(yo +§770)+(t0+Ej:(1+7x1.1j+(7 j:1.105,

Thus,

Y=Y, +g[§0 +217,+2¢, +w0]=1+%l(1+ 2.2+2.210+1.2105)=1.11034

Wy = f (Yo +hdo.te+h)=(y,+h &, )+(t,+h)=(1+0.1x1.105 ) +(0.1)=1.2105

For next iteration, we start from Y., and calculate the values of&,,¢: and

W.. They are

&=f(yut)=y,+t = 111034+ 0.1=1.21034,

h h h h
n=f (yﬁ‘iflvt1+§j:(y1+5'§1j+(t1+§j

:(1.11034+0—2'1x1.21034j + [O.1+0—2'1 j:1.320857,

h h h h
¢ =f (Y1+§771't1+§j:(y1+§771]+(t1+5j
=(1.11034+07'1><1.320857 j+ (0.1—%—07'1 j=1.32638285,

w,=f(y,+h{, t,+h)=(y,+h{, ) +(t +h)
—(1.11034+0.1x1.32638285 ) + 0.1+ 01)=1.44297829
Thus,

h
Y2:y1+€[951+2771+2§1+wl]

=1.11034 + 0—61 (1.21034+2.641714 +2.6527657 +1.44297829)=1.2428033

Example 11: Use Classical Runge-Kutta method of fourth-order to solve

the IVP y=2y+3e',y(0)=0usingh=0.1. Carry out the solution for two time

steps.

Solution: The first derivative is found from ¥=2¥+32 . To find ¥ we

must know Yo, %o, 7,%0 and W,. They are
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yo:01
&= (Youty)=2Y,+3e° =2x0+3xe’=3,

h
=" (yo +E§o L +Dj:2(yo +D§0j+3e(to 2] =2(0+0—'1x3j+3xe°'°5
2 2 2 2
=3.4538132809,

h h h o+D
So=1 (yo +E770’t0 +5):2(yo +E770j+3e( 2)

—2(0+071><3 453813289} +3xe”% =3.499194618,

w, = f (y0+h§O,tO+h):2(y0+hé~0)+3e(to+h)
=2(0+0.1x3.499194618 ) + 3x "' =4.015351678

Thus,

h
Y1ZYO+E[§O+2770+2§0+W0]

=0+ 0_61 (3+2x3.453813289+2x3.499194618 +4.015351678) = 0.3486894582

For next iteration, we start from Y., and calculate the values of &, ,¢: and

W.. They are

f(yo,t,)=2Y, +3e" =2x0.3486894582 + 3x ¢** =4.012891671,

f(yl+ E L +— j Z(lerg./fljJFBe(tl+2j

0.1 (0.14—%]
=2| 0. 3486894582+7x4 012891671j+3x e- 2/=4584170812,

h (tﬁ—g]
fly+= nl,t1+ =2 yl+5771 +3xe

1,01
2(0 3486894582+%><4 584170812J+3>< e( 2 ) =4.641298726,

= (v, +hd,t+h)=2(y, +h¢; )+3xel "
= 2(0.3486894582 +0.1x4.641298726 )+ 3xe"%=6.887058455

Thus,
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h
Y2:y1+g[§1+2771+2§1+wl]

=0.3486894582 + 0_61 (4.012891671+ 2x4.584170812+2x 4.641298726+6.887058455)

=0.83787094

Example 12: Use Runge-Kutta Gill method of fourth-order to solve the

IVP y=2y+3e',y(0)=0usingh=0.1. Carry out the solution for two time steps.

Solution: The first derivative is found fromy,=2y,+3e" . To find ¥ we

must know Yo, %o, %, %0 and W. They are

I
I
—

<

2

ty)=2Y,+3e"=2x0+3xe’=3,
h

(
h h h o+
770:f(YO"'Ego’to"'Ej:z(YO"'Eéoj"'ge( Zj

= 2(0+—'1x3j +3xe"® =3.453813289,

h h
yo+_(§o_770 )_5(680_2770 )’to+5j

h g
y0+_(égo_770 )__(980_2770 )j+3e[ ZJ

0.1

x—0.4538133 + O?lx 3.9076266 j +3€(7j =3.480397056,

Il
N
TN
o
+
‘_o
H

Thus,

Y1ZYO+2[§0+<2_\/§)770+(2+\/§)§o+Wo}

=0+%1(3+(2—J§ )><3.453813289 +(2+J§ )x3.480397056+4.015351678)

=0.3486894582
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For next iteration, we start from Y., and calculate the values of&,,¢: and
W.. They are

&=f(ypt)=2y,+3e" =4.012891671,

h h h (++3)
n="f yl+E§1,tl+E =2 y1+§§l +3e =4.584170812,

y1+_(§1_771)__(981_2771)1t1+gj

=2[y1 +—=(&-m)-=(& —2771)j+ 3e[t”5) =4.617635569,

w, = f yl__(771_ §1)+h§1’t1+hj

- Z(yl -1(771 ar h§1j+3e“”h) =5.289846936

Yz:y1+2[§1+(2—ﬁ)771+(2+x/§)§l+Wl}=0.8112507529
Summary:

We now end this chapter by giving a summary of it. In this chapter we
have covered the following

(1) The steps involved in solving the IVP y'=f(y,t), y(t,)=Y,.te[t,,b]
by Euler's method are as follows :
Step 1: Evaluate f(y,.t,)
Step 2: Find y, =y, +hf(y,t,)
Step 3: If t,<b, change tjtot,+hand y, toy, and repeat steps 1
and 2
Step 4: Ift,=b, write the value of Y

(2) Runge-Kutta methods being single step methods are self- starting

methods.
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(3) Unlike Taylor series methods, R-K methods do not need
calculation of higher order derivatives f(y, t) but need only the

evaluation of f(y, t) at the off-step points.

Exercise:
1. Use Euler’s method to Solve the IVP
%:4—2 yt, y(0)=0.2.Find y (0.4) with h=0.1.
1 1 1 H —_
2. Solve the IVP y'=— I y(4)=4, by Euler's method using h=0.1. Carry
X" -4y

out the solution for five time steps. Find the exact error.

3. Use Euler method to find the solution of y'=t+|y|,giveny(0)=1. Find the

solution on [0, 0.8] with h = 0.2..
4. Solve the IVP y'=1+y?,y(0)=1 and find Find y(0.6) taking h=0.2and h=0.1

using the Euler’s methods.
5. Solve the IVP y'=-ty? y(2)=1 and find y(2.1)andy(2.2) taking h=0.1 using

the following R-K methods of second order

a) Optimal R-K method

b) Improved tangent method

c) Heun's method 6. Solve the IVP y':3t+%y,y(0)=1 and find

y(2.1)andy(2.2) taking h=0.1 using the following R-K methods of second
order

a) Optimal R-K method

b) Improved tangent method

c) Heun's method

Compare the results with the exact solution y(t)=13e"?-6t-12,and find the

errors.
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7. Use Optimal Runge-Kutta method of second-order to solve the IVP

10y'=y?*+t*,y(0.2)=1, usingh=0.1.

8. Use Classical Runge-Kutta method of fourth-order to solve the IVP

y=y+t,y(0)=1 usingh=0.1. Carry out the solution for five time steps. Also

find the error at t = 0.5, if the exact solution is y(t)=2e'-t-1.

9. Solve the IVP y'=2y+3e',y(0)=0 and find y(2.1)andy(2.2) taking h=0.1

using the following R-K methods of second order

a) Classical R-K method of fourth-order
b) R-K Gill method of fourth-order

10. Use Runge-Kutta Gill method of fourth-order to solve the IVP

%:1—2 yt, y(0.2)=0.1948.Find y (0.2) with h=0.2.

Glossary:

B Boundary conditions: n conditions which are prescribed at more
than one point.
Boundary value problem (BVP): Differential equation together
with the boundary.

C Classical Runge-Kutta Method of fourth:

Vi =Y, +2[~§ +217 24 +W |
where
&=T(%t)

aei(neBset)

h h
Q—f[M+§7l’ti+§j
w="f (y,+hg.t+h)

E Euler’s Method:
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yi+l:hyi ’
where h=At=t ,—t, is the step size.

Henu’s Method: The Runge-Kutta method of second order also

known as the Euler-Cauchy method is

1
Yia=Yi +§(‘§| +77i)

where
gi =h f (yi’ti)
m=hf(y,+& .t+h)

Improved Tangent Method: The Runge-Kutta method of second

order also known as the modified Euler's method.

Yiia=Yi T,

where

&=hf (yi'ti)
g

: h
n=hf (yi +?' L +Ej
Optimal Runge-Kutta Method: A second order Runge-Kutta method
given by
mﬂ=m+%ﬁ+&n]
where

&=hf(y.t)

2&  2h
=hf|y+—= t+—
'7| (yl 3 1 3)

R Runge-Kutta Gill Method: A fourth order Runge-Kutta method

given by

Yia=Yi +2|:§i +(2_\/§>77i +(2+\/§)§i +Wi]

Where
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5. =f (yi’tl)
n=f (yi +2§i e +hj
G=1 [y- s mm )D& -2 )t +—}
1 1 2 1 1 2 1 1 L |
w = f [yi _lz(ﬂi - é/i)+h§i'ti +h :l
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